\(\int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx\) [576]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 159 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\frac {2 a \left (5 a^2+9 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a b^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{7 d} \]

[Out]

2/5*a*(5*a^2+9*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/
21*b*(21*a^2+5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+32
/35*a*b^2*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*b^2*cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))*sin(d*x+c)/d+2/21*b*(21*a^2+
5*b^2)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2872, 3102, 2827, 2719, 2715, 2720} \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\frac {2 b \left (21 a^2+5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a \left (5 a^2+9 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}+\frac {32 a b^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{35 d}+\frac {2 b^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}{7 d} \]

[In]

Int[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^3,x]

[Out]

(2*a*(5*a^2 + 9*b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*b*(21*a^2 + 5*b^2)*EllipticF[(c + d*x)/2, 2])/(21*d
) + (2*b*(21*a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (32*a*b^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])
/(35*d) + (2*b^2*Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])*Sin[c + d*x])/(7*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2872

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/
(d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) + a
*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n
 - 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m]
|| (EqQ[a, 0] && NeQ[c, 0])))

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{7 d}+\frac {2}{7} \int \sqrt {\cos (c+d x)} \left (\frac {1}{2} a \left (7 a^2+3 b^2\right )+\frac {1}{2} b \left (21 a^2+5 b^2\right ) \cos (c+d x)+8 a b^2 \cos ^2(c+d x)\right ) \, dx \\ & = \frac {32 a b^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{7 d}+\frac {4}{35} \int \sqrt {\cos (c+d x)} \left (\frac {7}{4} a \left (5 a^2+9 b^2\right )+\frac {5}{4} b \left (21 a^2+5 b^2\right ) \cos (c+d x)\right ) \, dx \\ & = \frac {32 a b^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{7 d}+\frac {1}{7} \left (b \left (21 a^2+5 b^2\right )\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{5} \left (a \left (5 a^2+9 b^2\right )\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 a \left (5 a^2+9 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a b^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{7 d}+\frac {1}{21} \left (b \left (21 a^2+5 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a \left (5 a^2+9 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {32 a b^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x)) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.78 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.69 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\frac {42 \left (5 a^3+9 a b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 \left (21 a^2 b+5 b^3\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+b \sqrt {\cos (c+d x)} \left (210 a^2+65 b^2+126 a b \cos (c+d x)+15 b^2 \cos (2 (c+d x))\right ) \sin (c+d x)}{105 d} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^3,x]

[Out]

(42*(5*a^3 + 9*a*b^2)*EllipticE[(c + d*x)/2, 2] + 10*(21*a^2*b + 5*b^3)*EllipticF[(c + d*x)/2, 2] + b*Sqrt[Cos
[c + d*x]]*(210*a^2 + 65*b^2 + 126*a*b*Cos[c + d*x] + 15*b^2*Cos[2*(c + d*x)])*Sin[c + d*x])/(105*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(420\) vs. \(2(195)=390\).

Time = 12.03 (sec) , antiderivative size = 421, normalized size of antiderivative = 2.65

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+\left (-504 a \,b^{2}-360 b^{3}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (420 a^{2} b +504 a \,b^{2}+280 b^{3}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-210 a^{2} b -126 a \,b^{2}-80 b^{3}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 a^{2} b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{3}-189 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(421\)
parts \(\text {Expression too large to display}\) \(725\)

[In]

int(cos(d*x+c)^(1/2)*(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*b^
3+(-504*a*b^2-360*b^3)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(420*a^2*b+504*a*b^2+280*b^3)*sin(1/2*d*x+1/2*c
)^4*cos(1/2*d*x+1/2*c)+(-210*a^2*b-126*a*b^2-80*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+105*a^2*b*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+25*b^3*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-105*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-189*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2)/(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.29 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\frac {2 \, {\left (15 \, b^{3} \cos \left (d x + c\right )^{2} + 63 \, a b^{2} \cos \left (d x + c\right ) + 105 \, a^{2} b + 25 \, b^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (21 i \, a^{2} b + 5 i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-21 i \, a^{2} b - 5 i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 \, \sqrt {2} {\left (-5 i \, a^{3} - 9 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 \, \sqrt {2} {\left (5 i \, a^{3} + 9 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{105 \, d} \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

1/105*(2*(15*b^3*cos(d*x + c)^2 + 63*a*b^2*cos(d*x + c) + 105*a^2*b + 25*b^3)*sqrt(cos(d*x + c))*sin(d*x + c)
- 5*sqrt(2)*(21*I*a^2*b + 5*I*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*sqrt(2)*(-21*
I*a^2*b - 5*I*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*sqrt(2)*(-5*I*a^3 - 9*I*a*b^
2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*sqrt(2)*(5*I*a^3 + 9
*I*a*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(1/2)*(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 14.57 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.92 \[ \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \, dx=\frac {2\,\left (a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^2\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}-\frac {2\,b^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {6\,a\,b^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^3,x)

[Out]

(2*(a^3*ellipticE(c/2 + (d*x)/2, 2) + a^2*b*ellipticF(c/2 + (d*x)/2, 2) + a^2*b*cos(c + d*x)^(1/2)*sin(c + d*x
)))/d - (2*b^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)
^2)^(1/2)) - (6*a*b^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c
 + d*x)^2)^(1/2))